The Effect of Offenders' Sex on Reporting Crimes to the Police
Thessa M. L. Wong and Rens Van de Schoot

J Interpers Violence 2012 27: 1276 originally published online 11 November 2011
DOI: 10.1177/0886260511425245

The online version of this article can be found at: http://jiv.sagepub.com/content/27/7/1276

Published by: SAGE
http://www.sagepublications.com

On behalf of: American Professional Society on the Abuse of Children

Additional services and information for *Journal of Interpersonal Violence* can be found at:

Email Alerts: http://jiv.sagepub.com/cgi/alerts
Subscriptions: http://jiv.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
Citations: http://jiv.sagepub.com/content/27/7/1276.refs.html

>> Version of Record - Apr 3, 2012
OnlineFirst Version of Record - Nov 11, 2011

What is This?
The Effect of Offenders’ Sex on Reporting Crimes to the Police

Thessa M. L. Wong¹ and Rens Van de Schoot²

Abstract
This article examines the difference in victims’ reporting behavior regarding crimes committed by males and by females. The authors expect that victims of female offenders are less likely to report to the police than victims of male offenders because of differences in the victim–offender relationship as well as in the victim’s sex. With recent developments in Bayesian statistics, new tools have become available that enable the direct evaluation of researchers’ expectations. All cases of robbery with assault from the National Crime Victimization Survey have been investigated (n = 478). Findings reveal that female offenders are underreported compared with male offenders and that this can be explained by the victim characteristics but only in combination with the offender’s sex.

Keywords
crime reporting, victims, sex differences, victim–offender relationship, robbery with assault

Introduction
There are many people who become victim of a crime, but not all of them report their victimization to the police (Goudriaan, 2006). This might be...
because victims want to protect the offender, because the offence is seen as just a minor one, or because the victim is afraid of revenge (Felson, Messner, Hoskin, & Deane, 2002). Due to this failure to report, the police are less able to apprehend all offenders: they are simply not aware of the fact that some crimes have occurred. Criminal records, drawn from police reports, are therefore not representative of all crimes and all victims. Furthermore, unreported offenders still go free and are able to possibly commit other crimes and victimize others (Skogan, 1984). It goes without saying that for these reasons it is very important to chart victims’ reactions to criminal victimization and to reveal whether certain types of offenders are structurally underreported.

McCurt, Smith, and Sawyer (2010) show in their literature review that victim characteristics (such as age, sex, race, socioeconomic status) can determine the decision to report the crime to the police. Much less is known, however, about the influence of offender characteristics on victims’ reporting behavior. The latter provides the focus for this study which is specifically concerned with the offender’s sex. We address the question whether and why there is a difference in crime-reporting behavior differentiated for female and male offenders using the National Crime Victimization Survey (NCVS).

The decision-making process of victims on whether to report to the police is a complex one. It involves taking both costs and benefits into consideration, according to the rational choice theory (Gottfredson & Gottfredson, 1988). Victims are reasonable beings who base their decision to contact the police on rational assumptions about the offence (Kaukinen, 2002). For one, victims may feel they have a public obligation to report crimes. Besides, they may be convinced that people who commit crimes should be duly punished for their offence. In addition, victims may report for personal reasons. In case of violent offences this could be to receive protection, in case of property offences to receive compensation. Victims may also decide, however, to leave the crime unreported. Victims may feel, for instance, that they will waste the police’s time by reporting their victimization as it feels not important enough, or they do not feel like going through the trouble of reporting the crime. It is also possible that victims are ashamed of their victimization or afraid of reprisal and therefore decide not to contact the police. The weight of these benefits and costs vary heavily across victim characteristics, offence characteristics, and offender characteristics (Tarling & Morris, 2010).

It is likely that the offender’s sex plays a role in the decision-making process of victims. The assumption is that crimes committed by females are less
often reported to the police than crimes committed by males. There are two reasons for this assumption. First, female offenders more commonly, know their victims and tend to offend more often within or near the home than males (Feld, 2009; Steffensmeier, Schwartz, Zhong, & Ackerman, 2005). Victims known to the perpetrator are found to report less often to the police than victims who are strangers. This is confirmed, for example, by Gartner and Macmillan (1995), who in their study on reporting crimes of violence against Canadian women established that victimization by strangers was more likely to be reported to the police than victimization by a known offender. Similar results for both men and women were found by Goudriaan (2006) who studied a Dutch sample. An explanation victims are afraid of reprisal and may therefore be reluctant to report to the police. In other words, they consider costs to be higher than benefits in these cases. This occurs most often in cases with female victims known to the offender (Singer, 1988). Furthermore, Felson and Paré (2005) showed that victims who experienced domestic violence by someone they knew were more likely to think the incident was minor. As females more often seem to victimize someone they know, who in turn is not likely to call the police, offences committed by females might be less often reported to the police.

A second reason for sex differentiation in reporting behavior may be that female offenders, more often than male offenders, target female victims (Kruttschnitt, Gartner, & Ferraro, 2002; Putallaz & Bierman, 2004). This might offer an explanation for underreporting female offenders, were it is not that female victims appear to be more likely to report to the police than male victims. Kaukinen (2002), in a study on help-seeking decisions among victims in Canada, found that females were twice as likely as males to go to police rather than not seeking help. NCVS data revealed that female victims of violent crimes were more likely than their male counterparts to report the crime to the police, whereas there were no significant differences for property crimes (Truman & Rand, 2010). Female victims have a higher tendency to report to the police, possibly because they were found to have a more favorable attitude toward the police (Taylor, Turner, Esbensen, & Winfree, 2001). However, if females have become a victim of female-offending behavior, they were less likely to contact the police than if the offender is male (Felson & Paré, 2005). This is, perhaps, because female victims of male criminal behavior are more vulnerable and in need of protection compared with cases with female offenders. Consequently, as female victims report less often when their offender is female, there could be a sex difference in reporting criminal behavior.
Research Questions and Hypotheses

The present study examined whether there is a difference in reporting crimes to the police for male and female offenders. If this is indeed the case, we attempted to establish associations for the victim–offender relationship and for the victim’s sex. To assess crime-reporting behavior, we focused on property crimes. Property crimes, in general, are quite common among females (Steffensmeier et al., 2005), but victims often do not actually see their offender. Therefore, we focused on those property crimes in which it is very likely for the victim to have seen the offender, that is, robbery with assault. Furthermore, we focused on crimes that have been committed by a single offender instead of multiple offenders because, in this way, we were able to focus explicitly on characteristics of one offender and rule out group effects. Besides, with multiple offenders, it is often difficult to determine the exact number of female and male offenders (Lauritsen, Heimer, & Lynch, 2009).

In particular two research questions were examined: 1) do victims report robbery more often to the police when the offender is male than female because female offenders more often know their victims and victims are less likely to report to the police when they know their offender compared with when they do not? and 2) do victims report robbery more often to the police when the offender is male than female because female victims more often report to the police when their offender is male than when their offender is female.

Method

Sample

To analyze the research questions, a subsample was selected ($n = 478$) of the National Crime Victimization Survey (NCVS; Bureau of Justice Statistics, 1979-2003) of all robbery cases with assault. The goal of this survey was to estimate the level of crime and changes in this level in the United States through victimization reports. A multistage cluster sample of 66,000 households was visited twice a year for a period of 3 to 5 years. Every member of the household from the age of 12 was interviewed in detail about his or her victimization experiences.

For the present study, we used data from the concatenated file containing all annual measures from 1992 to 2006. As we were interested in offenders, the incident level file, with offences being the unit of analysis, was selected from this concatenated file. There were 1,028 robbery crimes with assault in the data file. Of those incidents, 497 were committed by a single offender.
The offender’s sex was known for 492 of these cases. Thirteen of these incidents bore no information about whether the offender was known to the victim or not, and one case bore no information about the victim’s reporting behavior. The selection procedure left us with 478 incidents.

Most offenders were adults (84.3%). The rest of the offenders were between the age of 12 and 17 (11.9%), or their age was unknown (3.8%). These quantities did not differ for male versus female victims ($\chi^2 = 0.603; p = .48$). The age of the victims was between 17 and 90. Concerning race, 43.6% of the offenders were White and 43.4% were African American, and 10.4% Other. Most offenders were male (86.8%) and most victims were female (56.8%).

Measures

All information about the incident, including offender characteristics and reactions to the incident, was assessed through the victims. For the present study, we used victim’s and offender’s sex, type of offence (only robbery with assault was selected), relationship to the offender, and whether the incident was reported to the police. Variables that need some clarification are discussed below.

Robbery with assault. Victims described the incident to the interviewer, and it was then assigned to one of the offence categories. Robbery with assault included robbery with minor assault and robbery with serious assault.

Relationship to offender. The offender was coded as either a stranger or a known offender. A known offender ranged from being known by the victim from sight alone to being well known.

Analytic Strategy

To examine the hypotheses about the associations between reported to the police, known offender, offender sex, and victim sex, we will first provide descriptive statistics about the difference in reporting for male and female victims. Next, we present a log-linear analysis (Agresti, 1996) to be followed by a novel approach: Bayesian evaluation of inequality constrained hypotheses (e.g., Hoijtink, Klugkist, & Boelen, 2008; Van de Schoot, Hoijtink, Mulder, et al., 2011). This latter technique is used to give direct evidence for the expectations under investigation when estimating a confirmatory contingency table (Laudy & Hoijtink, 2007; Laudy et al., 2005; Van de Schoot & Wong, 2011). As it is a fairly new technique, we devoted some space here to introducing the methodology.
The traditional evaluation of contingency tables (i.e., log-linear analysis) is to discover associations among categorical variables to determine the best model that will account for observed frequencies (Tabachnick & Fidell, 2001). The goal is to find a model with the smallest number of associations that still provides a good fit, indicated by a nonsignificant likelihood ratio chi square (see for an application Van de Schoot, Van der Velden, Boom, & Brugman, 2010). However, as explained in the introduction section, we had specific expectations about the relationship between the parameters of interest. That is, certain cell probabilities of the contingency table were expected to be more probable than other cell probabilities (see below for a detailed description of our expectations). Direct evaluation of these expectations is only possible by means of the method of evaluating inequality constrained hypotheses using Bayesian model selection (BMS). Our analytic needs led us to use the software developed by Laudy and Hoijtink (2007; see also Laudy et al., 2005). The main elements of this methodology are introduced below and are described in more technical detail in Hoijtink et al. (2008) or Van de Schoot et al. (2011). Comparisons between more traditional ways of analyzing data and the procedure of evaluating inequality constrained hypotheses using BMS are described in Van de Schoot, Hoijtink, Mulder, et al. (2011) and Kuiper and Hoijtink (2010). Applications of evaluating inequality constrained hypotheses using BMS can be found in Van de Schoot and Wong (2011) or Meeus et al. (2011) among many others; for an overview see Van de Schoot, Hoijtink, and Romeijn (2011).

BMS can be used to provide a direct quantification of the support for each of the hypotheses under investigation and to determine which of them receives most support from the data. In this study, BMS will be applied to analyze the probability of each of the explanations of difference in reporting for male and female victim. To evaluate a set of hypotheses with BMS, three components are needed: (a) prior knowledge (the researcher’s expectations); (b) the likelihood of data (the information in the data set); and (c) the marginal likelihood (the support of the latter for the first). To decide which hypothesis is the best out of the set of hypotheses, these components are translated into Bayes Factors (BF).

The first component, prior knowledge, is the set of different expectations a researcher has in terms of constraints among the parameters of interest. Consider the 2×2 contingency table presented in Table 1, with two dichotomous variables (X and Y). In this table, π_{ij} denotes the cell probabilities in the contingency table; i denotes the categories of the row variable, and j denotes the categories of the column variable. The association between X and Y can,
for example, be evaluated in terms of conditional probabilities. For instance, \(\frac{\pi_{12}}{\pi_{12} + \pi_{22}} > \frac{\pi_{21}}{\pi_{21} + \pi_{22}} \), where the probabilities are conditioned on the row totals, and “>” indicates that the conditional probability in cell 11 is larger than in cell 21. Note that the use of the inequality constraint makes it impossible to evaluate the hypothesis of interest using traditional techniques and that the method of Bayesian evaluation of inequality constrained hypothesis is the only resort.

For the present study, BMS is applied to examine the two research questions about the expected directions of the associations described in the introduction between (a) Reported \(\times \) Offender sex \(\times \) Known offender and (b) Recorded \(\times \) Offender sex \(\times \) Victim sex. The contingency table for Research Question 1 is given in Table 2. In this table, \(\pi_{ijk} \) denotes the cell probabilities between the variables reported (denoted by \(i \)), offender sex (denoted by \(j \)) and known offender (denoted by \(k \)). For the first research question, four expectations were formulated:

1. There are more reports on male offenders than on female offenders by victims.
2. There are more female offenders who commit offences to known victims than male offenders.
3. Victims who are known to their offender report less often than victims who are strangers to their offenders.

4. The combination of the three expectations.

These four expectations can be translated into statistical hypotheses:

\[H1: \frac{\pi_{111} + \pi_{211}}{\pi_{111} + \pi_{211} + \pi_{121} + \pi_{221}} > \frac{\pi_{112} + \pi_{212}}{\pi_{112} + \pi_{212} + \pi_{122} + \pi_{222}} \]

\[H2: \frac{\pi_{211} + \pi_{212}}{\pi_{211} + \pi_{212} + \pi_{221} + \pi_{222}} > \frac{\pi_{111} + \pi_{112}}{\pi_{111} + \pi_{112} + \pi_{121} + \pi_{122}} \]

\[H3: \frac{\pi_{112} + \pi_{122}}{\pi_{112} + \pi_{212} + \pi_{122} + \pi_{222}} > \frac{\pi_{111} + \pi_{121}}{\pi_{111} + \pi_{121} + \pi_{211} + \pi_{221}} \]

\[H4: H1 \text{ and } H2, \text{ and } H3 \]

For Research Question 2 about Reported \(\times \) Offender sex \(\times \) Victim sex the expectations were (statistical hypotheses are not reported but are similar to those of Research Question 1):

1. There are more reports on male offenders than on female offenders by victims.
2. Female victims more often report a crime when they are victimized by a male offender compared with a female offender.
3. The combination of the two expectations.

After confronting the set of theories with the data (Component 2), the method of BMS provided each hypothesis per research question with a degree of support (Component 3). The outcome represented the amount of evidence of one hypothesis compared with another hypothesis. The BF for each \(t \)th hypothesis is computed and compared with the unconstrained hypothesis (\(BF_{t,\text{unc}} \)). This latter hypothesis is an empty model without any constraints and can be compared with the traditional “alternative hypothesis.” Stated more precisely, all inequality constrained hypotheses are nested in the unconstrained model, that is, the largest model which can be seen as the traditional “catch all” alternative hypothesis. From these factors, \(BF_{t,\text{unc}} \), all mutual comparisons between constrained hypotheses were computed, for example, \(BF_{1,2} = BF_{1,\text{unc}} / BF_{2,\text{unc}} \). A detailed step-by-step guideline about the methodology, as well as more information about the
interpretation of BFs in relation to inequality constrained hypotheses, can be found in Van de Schoot et al. (2010) or Hoijtink et al. (2008). Estimation of BF for nested contingency tables is discussed in Laudy and Hoijtink (2007).

Results

Descriptive Statistics

Of all robbery crimes in our data, 371 (76%) offences were reported to the police. Of the crimes committed by males, most were reported (78%). This percentage was significantly lower for crimes that were committed by females (58%; $\chi^2(1) = 11.84, p < .001$). Contingency tables for the association between (a) Reported \times Offender sex \times Known offender and (b) Reported \times Offender sex \times Victim sex are presented in Tables 3 and 4, respectively.

Noteworthy findings are that 54% of male offenders were strangers to the victim, whereas this was only 10% for female offenders (see Table 3). Of the crimes committed by known offenders, 70% were reported to the police against 82% of the crimes committed by strangers. Table 3 shows, in addition, that 58% of female offenders were reported to the police if the offender was known to the victim, compared with 57% in case of being a stranger. In contrast to this finding, 83% of male offenders were reported if they were a stranger, whereas this was only 74% for known male offenders.

Table 4 shows that 59% of the victims of male offenders were female, compared with 46% female victims of female offenders. Also, 77% of the reports to the police were made by male victims, compared with 74% by female victims. Finally, if the offender was male, 78% of the female victims reported to the police, whereas this was 43% for female offenders. In contrast

Table 3. Cross-Tabulation Reported \times Offender Sex \times Known Offender ($n = 478$)

<table>
<thead>
<tr>
<th>Known Offender</th>
<th>Offender Sex</th>
<th>Reported to Police</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Known</td>
<td>Male</td>
<td>166 (74%)</td>
<td>59 (26%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>34 (59%)</td>
<td>24 (41%)</td>
</tr>
<tr>
<td>Stranger</td>
<td>Male</td>
<td>157 (84%)</td>
<td>31 (16%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>4 (57%)</td>
<td>3 (43%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>371 (76%)</td>
<td>120 (24%)</td>
</tr>
</tbody>
</table>
to this finding, 78% of the male victims reported to the police if the offender was male, whereas this was 71% for female offenders.

Log-Linear Analysis

The traditional approach to find out whether there are significant associations between Reported × Offender sex × Known offender × Victim sex, is to perform a 4-way log-linear analysis. Using SPSS HILOGLINEAR, there appeared to be significant 3-way effects (χ²(5) = 12.63, p = .02) but no higher order effects (i.e., 4-way effect; χ²(1) = 1.69, p = .15). Stepwise selection by backward deletion of effects produced a model that includes four significant associations:

- Reported × Offender sex × Victim sex (p = .01).
- Reported × Known offender (p < .001).
- Offender sex × Known offender (p = .01).
- Victim sex × Known offender (p < .001).

The final model indicated a good fit between the observed frequencies and expected frequencies generated by the model (likelihood ratio χ²(9) = 27.92; p < .001). Also, deleting another association from the model resulted in a significant change of the partial likelihood ratio χ²(p < .001). As these results indicate, the associations for both research questions seem to exist. A traditional approach would end here after the log-linear analysis and inspection of the contingency tables, but in the present article we go one step further by directly evaluating our expectations as formulated in the strategy of the analysis section above.
The results of the evaluation of inequality constrained hypothesis using BMS for both research questions are shown in Table 5. First, looking at the column indicated by BF_{t, unc}, it appears that the fourth hypothesis for Research Question 1 and the third hypothesis for Research Question 2 receive the highest BFs against the unconstrained hypotheses. For example, H4 of Research Question 1 receives 6.20 times as much support from the data as the unconstrained hypothesis. Hypothesis 1 of Research Question 1 receives, for example, only 2.01 as much support from the data as the unconstrained hypothesis.

Second, using the comparisons with the unconstraint hypothesis, it is possible to compute the BFs between other informative hypotheses. Comparing the most plausible hypothesis (H4 for Question 1 and H3 for Question 2) to the other hypotheses (shown in the column indicated by BF_{t,4} or BF_{t,3}) reveals that for both Research Questions 1 and 2, the last hypothesis is the best.

Table 5. Bayesian Results for Research Questions 1 and 2

<table>
<thead>
<tr>
<th>Research Question 1</th>
<th>BF_{t, unc}</th>
<th>BF_{t,4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: There are more reports on male offenders than on female offenders by victims</td>
<td>2.01</td>
<td>0.32</td>
</tr>
<tr>
<td>H2: There are more female offenders who commit offences to known victims than male offenders</td>
<td>2.02</td>
<td>0.33</td>
</tr>
<tr>
<td>H3: Victims who are known to their offender report less often than victims who are strangers</td>
<td>1.98</td>
<td>0.32</td>
</tr>
<tr>
<td>H4: The combination of the three expectations</td>
<td>6.20</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Question 2</th>
<th>BF_{t, unc}</th>
<th>BF_{t,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: There are more reports on male offenders than on female offenders by victims</td>
<td>2.00</td>
<td>0.53</td>
</tr>
<tr>
<td>H2: Female victims more often report a crime when they are victimized by a male offender compared with a female offender</td>
<td>1.99</td>
<td>0.53</td>
</tr>
<tr>
<td>H3: The combination of the two expectations</td>
<td>3.79</td>
<td>—</td>
</tr>
</tbody>
</table>

BMS

The results of the evaluation of inequality constrained hypothesis using BMS for both research questions are shown in Table 5. First, looking at the column indicated by BF_{t, unc}, it appears that the fourth hypothesis for Research Question 1 and the third hypothesis for Research Question 2 receive the highest BFs against the unconstrained hypotheses. For example, H4 of Research Question 1 receives 6.20 times as much support from the data as the unconstrained hypothesis. This indicates a good model fit. Hypothesis 1 of Research Question 1 receives, for example, only 2.01 as much support from the data as the unconstrained hypothesis.

Second, using the comparisons with the unconstraint hypothesis, it is possible to compute the BFs between other informative hypotheses. Comparing the most plausible hypothesis (H4 for Question 1 and H3 for Question 2) to the other hypotheses (shown in the column indicated by BF_{t,4} or BF_{t,3}) reveals that for both Research Questions 1 and 2, the last hypothesis is the best.
hypothesis under investigation. These results directly confirm our expectations such as they are described in the introduction section.

Discussion

The purpose of this study was to examine whether and why victims report their victimization more often when committed by a male offender compared with a female offender. Our findings confirmed our expectation that victims more often contact the police when they are victimized by males. This implies that there are many more females who commit offences than the police are aware of. Of course, this difference in numbers also exists for male offenders, but our study showed that the inequality is bigger for females. Previous studies showed that the so-called “prosecution gap”—the difference between the number of offences prosecuted and the number of offences actually committed—(Rouwette, van Hooff, Vennix, & Jongebreur, 2007) is bigger for females than for males. Van der Laan and Blom (2006), for instance, examined 10- to 17-year-olds and reported five-and-a-half times more delinquent boys than delinquent girls according to police records compared with one and a half times more according to self-report. Our study suggested that one of the causes of this bigger gap for females is the difference in reporting behavior of victims of male and female offenders.

This study furthermore provided new insights about the reason why offences committed by females are less often reported to the police than those committed by males. Results revealed that this is related to victim characteristics (i.e., the victim’s sex and relationship with offender), but only in combination with the offender’s sex. As expected, female offenders had a higher tendency to victimize people they know. These known victims, in turn, are less likely to report their involvement in a crime (Gartner & Macmillan, 1995; Goudriaan, 2006) and therefore we expected that offences committed by females would be less often reported to the police. However, we found that there was actually no difference in reporting behavior between known and stranger victims of female offenders. For male offenders, the results were in line with previous findings: victims were less likely to contact the police if they knew the offender. Crimes of female offenders are therefore less often reported than crimes of male offenders, not because known victims of female offenders report less often, but because males victimize more strangers who in turn report more often in case of male offenders. Why there is no difference in reporting behavior between victims who know the offender and those who do not is unclear. It could be that the quality of the relationship has something to do with it. It could be interesting for future research to examine this more closely.
Furthermore, in line with previous findings (Felson & Paré, 2005), female victims were more likely to go to the police when a male was involved in the crime. For male victims it hardly mattered whether the offenders were male or female in deciding to contact the police. The decision of female victims, however, was dependent on the offender’s sex, presumably because being victimized by a male is more threatening for females than being victimized by a female (Felson & Paré, 2005).

So, although we knew already from previous literature that the choice of victims differs for male and female offenders (Feld, 2009; Steffensmeier, et al., 2005; Kruttschnitt, et al., 2002; Putallaz & Bierman, 2004), our research showed that this differentiated choice of victims leads to differences in reporting for male and female offenders. However, victim characteristics alone cannot explain the difference in reporting for male and female offenders; it is victim characteristics in combination with the offender’s sex that results in female offences being underreported in comparison to male offences.

A finding in contrast to previous studies was that male offenders more often targeted female victims than female offenders (Kruttschnitt et al., 2002; Putallaz & Bierman, 2004). The reason for this difference between our study and previous studies is unclear, but it is apparent that it makes the difference in reporting between male and female offenders even larger. As female victims are more likely to report to the police when they are victimized by males, targeting more female victims will lead to an even greater probability for male offenders to be reported.

Our study was limited, because we have treated all offenders in our data set as different offenders. Nevertheless, it is possible that the same offenders are present several times in our data set. It was not possible to verify this because offenders’ names are not recorded. Another limitation was that we cannot draw any causal inferences from our findings because of the cross-sectional nature of this study.

Despite these limitations, our study is relevant because of the direct examinations of our hypotheses using BMS. The major advantage of evaluating a set of informative inequality constrained hypotheses using BMS is that our prior information was incorporated into the analysis which could not have been possible with the classical approach. Moreover, the procedure is quite robust for analyzing small samples (Van de Schoot & Strohmeier, 2011).

This study showed that female crimes were less often reported to the police than male crimes. Explanations for this difference can be found in victim characteristics in connection with the offender’s sex. The structural underreporting of female offenders could be taken into account in considering criminal records. As the police are less aware of crimes committed by
females than by males, they will also put less effort in tracing female criminals. Criminal records may therefore be more biased for females than for males. To reduce the reporting difference, efforts could be made to convince individuals that they should report a crime when they become victimized, also if it is committed by a female.

Acknowledgments

The authors would like to thank the ICPSR for offering the NCVS data. Furthermore, many thanks to Jim Lynch and Tom Zelenock for explaining the data and their help in thinking about the initial framing of this study. The authors would also like to thank Anne-Marie Slotboom for commenting on a previous version of this manuscript.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

References

Netherlands. Retrieved from https://openaccess.leidenuniv.nl/bitstream/handle/1887/4410/Thesis.pdf;jsessionid=A68237AD8AC6938AA9DBBCD5D8DD56F3?sequence=1

Bios

Thessa M. L. Wong is a PhD student at the Department of Criminal Law and Criminology at the VU University Amsterdam. Her research interests include girl delinquency and sex differences in delinquency.

Rens van de Schoot obtained his doctorate at Utrecht University with a dissertation on informative hypotheses and Bayesian statistics. He is an Assistant Professor at the methods and statistics department, Utrecht University, The Netherlands. His research focuses on how to incorporate prior knowledge in statistical models.